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Abstract

This paper describes an approach to discrete event simulation modeling that appears to be effective

for developing portable and efficient parallel execution of models of large distributed systems and com-

munication networks. In this approach, the modeler develops sub-models using an existing sequential

simulation modeling tool, using the full expressive power of the tool. A set of modeling language exten-

sions permit automatically synchronized communication between sub-models; however, the automation

requires that any such communication must take a non-zero amount of simulation time. Within this

modeling paradigm, a variety of conservative synchronization protocols can transparently support con-

servative execution of sub-models on potentially different processors. A specific implementation of this

approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the

Intel Paragon.

*This work is supported in part by NSF grant CCR-9201195. It is also supported in part by NASA contract number NAS1-

19480 while the author was a consultant at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA, 23681.



1 Introduction

Few in the parallel discrete event simulation (PDES) community would argue with the assertion that PDES

has not yet made a significant impact on discrete-event simulation practitioners. Indeed, this was the topic

of a pane] discussion at _he 1994 PADS (Parallel and Distributed Simulation) Conference. During this panel
discussion, a number of issues were raised and discussed:

. This lack-of impact is partially due to a lack of adequate PDES modeling-tools, see also Fujimoto's

discussion in [6] and Bagrodia's comment "The tools, stupid" [2]. The fact remains that efficient

PDES requires the use of sophisticated techniques that are often application specific, platform specific,
or both.

2. Fujimoto's "Holy Grail" does not currently exist. The "Holy Grail" provides arbitrary modeling

capability and automatically parallelizes to yield significant speedups. Although one person out of a

total attendance of approximately 80 disagreed, Fujimoto asserted that such a "Holy Grail" would not
be available "in this century".

3. The best way for PDES to have impact in the near future is to focus on specific applications. One way

to have maximum impact is to provide application specific PDES libraries or tools.

There is little to suggest that the "Holy Grail" will exist any time soon. PDES is an unusually tricky

branch of parallel processing, and the overwhelming experience to date in parallel software development

is that high performance requires hand-crafted attention to application and platform specifics, especially

with respect to load-balancing, communication, and synchronization costs. Only recently have tools been

developed to aut ornate the generation of efficient communication and synchronization (e.g., High Performance

Fortran), and even there the domain of applicability is limited to regular problems, and the user must map
the workload to processors.

The existing parallel simulation literature is justifiably viewed from the outside as having little relevance

to industrial simulation. The ideas found in that literature frequently lack a clear link to the computational

models and the type of tool to which a simu]ation practitioner is accustomed. While one can understand that

a researcher's goals and resources are different from an industrial simulation user. it comes as no surprise

that parallel simulation theory has apparently not yet had an impact on industrial simulation practice.

Recognizing these problems, a number of tools for parallel simulation have been developed, with the goal

of making the parallelism and synchronization more transparent to the user. The Army funded an effort at

the Jet Propulsion Lab to develop the Time Warp Operating System (TWOS), to support the development

of parallelized combat simulations. TWOS uses the event-oriented paradigm, and while the TWOS group

no longer exists. TWOS is still available (without support) from NASA's COSMIC software clearing house.

Jade Simulation developed sim++, a process-view system which was designed from the bottom to support

Time Warp simulation. The Army also supported a port of the commercial simulation language ModSim

(developed by CACI) onto TWOS, and then supported a port of ModSim to Jade's system. While we shall

leave to the historians the task of analyzing the story of these early efforts, it is safe to say that the efforts

were technically ambitious, but did not meet with the hoped-for level of success (e.g., see [12]). Even the most

enthusiastic supporter of these efforts would agree with the assertion that issues related to synchronization

(e.g., state-saving) ended up migrating to the modeler level by necessity, to escape unduly large overheads

when purely automated means were employed. None of these products were widely used.

An optimistic simulation tool. SPEEDES[14], may be licensed from the Jet Propulsion Lab: SPEEDES is

based in C++. and has the event-oriented world view. Little is known of its performance however, especially

on large-scale parallel computers. Many of the details of synchronization are the responsibility of the modeler.
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no knowledge of the simulation sub-model, except that which might be explicitly provided by the sub-model.

These considerations constrain the inter-processor synchronization to be conservative. This in turn

constrains the models that may be parallelized, and constrains their partitioning. Furthermore, the burden

of partitioning and mapping the simulation is the modelers. This latter requirement is still usual for parallel

processing in general; as for the former requirement, there is one essential model characteristic which allows

us to synchronize automatically--lookahead. In this context, lookahead is the ability to predict (or lower

bound) when in the future one sub-model may affect another. A concrete example is a job entering service

at a non-preemptive queue on sub-model i at time s and then being routed to another queue on sub-model

j when its service is over at time t. Or, it may be that the routing is state-dependent, in which case i knows

at time s that it may affect at time t any one of the queues to which it routes jobs, it simply doesn't know
which one.

Lookahead is necessarily application dependent. However, in the context of computer and communica-

tion system simulations one generally uses standard abstractions such as queues, petri nets, or finite-state

machines. The parallelizing extensions to such tools may provide special cases of these, designed in such a

way that the lookahead calculation and dissemination m_v be automated.

The discussion above identifies restrictions and limitations on the synchronization method used by the

extensions. The base simulation tool must also have characteristics that permit one to graft on extensions.

Foremost is the need for the simulation to provide a "trapdoor" to a base computer language, such as C. This

is absolutely required, to provide access to the synchronization and communication primitives available on

the tool's platform. Second, the tool must provide a means for the extension to cause an extensiofi-defined

synchronization function or routine to be invoked at a specific future point in simulation time. That function

must be able to block all further simulation processing until (through the extension's synchronization activity)

it is logically safe to do so. A third requirement is that a tool permit oneto reset the random number generator

seed. This is required to allow the extension to create separate independent random number streams on each

sub-model. We know these requirements are met by several simulation tools.

A last requirement is that the simulation be partitioned so that a message from one sub-model carries

all of the information needed by the recipient to correctly continue processing of the passed information. As

a counter-example, RESQ has mechanisms to "split" a job into sub-jobs, and later "join" those sub-jobs.

RESQ's mechanism for identifying the siblings of a split job is to have them contain a memory pointer



queueis FCFS.a job's departuretimecanbepredictedexactlyuponits arrival. Underotherqueueing
disciplines(e.g.processor-sharing,round-robin)lowerboundsonfuturedeparturetimescanbecomputed.
Correctlowerboundscanalwaysbecomputedunderanydisciplinesuchthatajob'sdeparturetimecannot
becomeearlierbyvirtueof anadditionalarrivalto thequeue.Theanswerto question(4)dependson the
model.Sometimesthemessagereportsajobtransfer,withtheidentityofthejob knownat thetimeit enters
service.Othertimesthemessagereflectsthestateof thesendingsub-modelat thetimethejob departsthe
server.Theanswerto question(5) is frequently"yes"in stochasticsimulationswhereroutingsarechosen
at random,independentlyof thestateof thesystem.It is "no"if theroutingisstate-dependent,e.g.,join
theshortestqueueamongall destinationpossibilities.Question(6)askswhetherspecialsynchronization
techniquescanbeapplied.In particular,if thequeue'soutputcanbeuniformized(whichistrueforaqueue
witha finitenumberofserversandCoxianphase-typeservicedistributions),thentechniquesdevelopedin
[7]canbeapplied.

Thedegreeto whicha queuecanpredictits futurebehavior depends on the various considerations just

listed. In our approach, when a sub-model specifies the carriers it will use. it also provides parameters that

specify answers to the questions above. These parameters govern how lookahead is computed at the carrier.

Only the author of the extensions need be concerned about the lookahead computations; the lookahead and

synchronization based upon it are transparent to the simulation modeler.

There are at least three well-studied conservative synchronization protocols suitable for the extension.

The selection of a protocol is constrained by the model characteristics. The YAWNS window-based protocol

[8, 10] is appropriate when the message associated with a job completion can always be generated and sent a

minimum of some X > 0 (which may be randomly sampled) simulation time units before the job completes

service. Barring any further refined lookahead, the YAWNS protocol will cause all processors to synchronize

globally every _'_min units of simulation, where Xmin is the minimum lookahead among all carriers in the

simulation. YAWN S should be used if the connect ivity between sub-models is high and the routing decisions

cannot be predicted in advance. To attain good performance, this protocol does require that substantial

sub-model simulation activity occur {on average) every E[Xrnin] units of simulation time. to amortize the

cost of global synchronization.

The Appointments protocol [9] requires each carrier to maintain, for each sub-model to which it may

route jobs. a lower bound (the appointment) on the next, time at which it might next send a package there.

The sub-model that creates the appointment is responsible for updating them. A sub-model that receives an

appointment at time t will not advance past time t until the sub-model that established that appointment

releases it to do so. Appointments should be used when a carrier's connectivity to other sub-models is low:

they are especially effective if the service times and routing destinations can be pre-sampled.

The PUCS protocol [7] may be used when all carriers have Markovian service distributions that may

be pre-sampled, and have routing distributions that may also be pre-sampled. The details are described

elsewhere; essentially PUCS is the appointments protocol, with lookahead derived from the mathematical
structure of the carriers.

Details of how one constructs carriers and communicates messages and appointments (and/or synchro-

nizes globally) will vary with simulation system, and execution platform. However, the essential ingredients

needed to support these extensions are access to an underlying computer language (e.g., C or C++), and the

ability to schedule future events at known simulation times. Access to an underlying language permits access

to communication and synchronization routines. An ability to schedule future events at known time-stamps

gives a sub-model the ability to block at an appointment or synchronization instant. The sub-model just

schedules an event that (in the case of appointments) waits for a message signaling release by the scheduling

sub-model, or (in the case of YAWNS) engages in a global reduction to synchronize and establish the next
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name of the associated station, and the identity of the processor on which that station resides. Thus just

as CSIM requires a mailbox call for each mailbox in the model, U.P.S. requires a remote-mailbox call

for each remote-mailbox in the model. When a process gives a package to a carrier it may speci_ the

remote-inailbox that describes the destination. U.P.S. then takes care of the actual package transmission
and receipt.

It is also possible to associate a ro_,ting distribution with a carrier. In this case a process cedes to the

carrier the selection of package destination, but provides a probability distribution the carrier uses. This

mechanism supports multi-casts; each element of the random routing table is a list of remote-mailboxes.

When selected, every station associated with a remote-mailbox in the list receives a copy of the package.

In order to send a package, a CSIM process builds a package and calls an U.P.S. routine to cause this

package to be delivered. In the case of a carrier without an associated routing distribution, this call is simply

ship(carrier,msg,len,rbox) where carrier is the identity of the carrier, msg is the starting address of the

package, len is the package's length, and rbox is the name of the remote-mailbox to which the package is to

be sent. In CSIM, messages are sent to ordinary mailboxes with a send(mailbox,msg), thus the U.P.S. call

naturally extends the CSIM call. As regards time advancement, U.P.S. mimics normal CSIM usage by not

returning control to the process until the delivery time of the package. Functionally then, passing a package

to a carrier is no different from a CSIM process running through the sequence of acquiring a facility, holding

it for the service duration, delivering a message in a mail-box at the service end, and releasing the facility. In

order to receive a package sent by a process in a different sub-model, a CSIM process accesses a station just

as though it is an ordinary CSIM mailbox, because it is an ordinary CSIM mailbox! The only purpose for

distinguishing a station from a mailbox at declaration time is to allow U.P.S. to maintain a list of stations

and their names, so that incoming messages can be properly delivered.

The U.P.S. handling of packages deserves comment. A sub-model can accept inter-processor messages

only from within an U.P.S. extension routine. To avoid buffering problems we must ensure that an extension

routine is called frequently to look for newly arrived messages, and move them into the simulator's address

space. This is easily accomplished by creating a CSIM process that just loops through two activities (i) call

hold(t) for some time t, (ii) check for, receive, and deal with any new messages. Currently, with YAWNS, this

process is invoked only at end of windows at which time global synchronization is required; clearly this could

(and should) be modified so as to pick up messages more frequently should there be heavy message traffic.

Messages can also be sought from within any other U.P.S. routine. The routine that looks for messages

just creates a CSIM process for that message, passing to the process the arrival time and other particulars.

The newly arrived process does a hold() to suspend itself until the arrival instant, deposits the package

into the appropriate station, and then departs. Appointments are handled slightly differently. A sub-model

maintains a list of all exterior carriers that send it appointments. An "in" and an "out" appointment count

is maintained for each. An appointment message always serves both to release the sub-model from the last

appointment made by the carrier, and to establish a new appointment. Receiving an appointment message,

a sub-model increments the "in" count associated with the sending carrier, holds until the appointment time,

then enters a loop where it waits for the "in" count to increase beyond the "out" count. Inside of this loop

the code looks for new messages, and calls hold(0), which gives any other process with the same activation

time a chance to be processed. On exiting the loop, the carrier's "out" count is incremented, and the process
terminates.

Presently U.P.S. supports the YAWNS and PUCS protocols. An U.P.S. statement declares which one is

to be used. We are actively incorporating the appointments protocol, and considering how to allow mixtures

within the same simulation. We are also implementing support for queries, and for "remote-storages" which

will allow one sub-model to contend for and acquire CSIM storage variables on another sub-model. Finally,
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Performance of U.P.S. using YAWNS
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Figure 3: Performance of U.P.S. using the YAWNS protocol. I/O service distribution is 0.5 plus an expo-

nential with mean 0.5.

server I/O queue, and mailboxes where a CPU queue looks for job arrivals. Next we modified this model for

U.P.S. just by making the multi-server I/O queue a carrier, and by setting up remote mailboxes and stations

for every central server subsystem. Then, to investigate how well the YAWNS protocol might work under

advantageous conditions, we assigned each I/O device a service time of 0.5 plus an exponential with mean

0.5. Figure 3 then plots the aggregate job completion rate as we vary the number of processors through

powers-of-two, keeping the load on each processor fixed at one basic network size, as described earlier. The

total problem size varies through the same values as were studied for the serial CSIM case. The 1 processor

U.P.S. rate provides insight into the overheads of executing YAWNS on this problem, overheads due primarily

to increased computation for lookahead and window calculations, and to extra logic in U.P.S. that is executed

at the point a job leaves service at an I/O device. The model studied has a very high U.P.S. component, and

the overhead slows the U.P.S. execution rate to about 70% of native CSIM. As we simultaneously increase

the problem size and number of processors, we observe that the aggregate job completion rate increases.

Compared with the corresponding native CSIM runs, we obtain speedups of 1.02, 1.8, 3.22, 6.20, 13.3, and

42.5 on power-of-two numbers of processors between 2 and 64.

By changing the I/O service distribution to be exponential we may use the PUCS synchronization mech-

anism. The results of doing so are presented in Figure 4 for two cases. The "light load" case is the same

as the problem studied under YAWNS, except for the service times. The overheads in this situation are

quite large for PUGS. Among the underlying synchronization messages, the ratio of overhead messages to

messages that carry jobs is 10 to 1. By increasing Pr to 0.999 and quadrupling the total number of jobs, we

achieve rather better performance. This is due both to a better computation to communication ratio (as a

result of increasing p_) and a better ratio of overhead messages to job-carrying messages, (1.5). The wide

variation in performance shows the sensitivity of the method to problem characteristics.

We also used YAWNS to simulate the light workload model, and found it to be very disadvantageous. No

problem/processor configuration achieved an aggregate rate larger than than 2000 completions per second.

A second problem is a network of switches, such as are used to establish long-distance phone calls. The



Performance of U.P.S. on telephone switching network
calls/sec
120000-

100000- / 30_050

r

1 2 4

Y
fm /

80000

60000

40000

20000

0

8 16 32 64

Processors

2O

10

Figure 5: Performance of telephone switching network

output port. In addition, there is a propagation delay for transferring packets from one switch to another.

This propagation delay is modeled by a simple hold statement in the case that the sending and receiving

switches are co-resident on the same processor while carriers are used if the switches are not co-resident.

These propagation delays are deterministic', depending only on the distance between the switches. Thus

the carriers have an infinite number of servers with the constant c equal to the propagation delay (and the

random part equal to zero). Thus the model uses the YAWNS protocol.

Packets arrive from the outside according to a batch Poisson process; the batch size is uniformly dis-

tributed between one and some maximum value. This permits some burstiness in the arrival process. When

a batch of packets arrives, a destination switch is chosen uniformly among the other switches. This is some-

thing of a worst case as far as parallel simulation goes since it results in both a single packet crossing multiple

processor boundaries and induces a load imbalance. (Switches in the center of the mesh are more heavily

loaded than those at the edges.) More elaborate arrival processes and flow control (e.g., leaky buckets) could
be added to the model; these would tend to increase the computation to communications ratio of the model.

Even at the speed of light, propagation delays down the fibers provide excellent lookahead. For example,

suppose the output ports operate at 100 megabits/second and the switches are 50 miles apart (the parameters

used in our model). Then it takes about 4 microseconds to put a 53 byte packet on the fiber, while it takes

about 270 microseconds to transmit it from one switch to the next at the speed of light. Thus intra-switch

events happen about 67 times faster than inter-switch events. This ratio provides excellent lookahead for
the purpose of parallel simulation.

A purely sequential version of this model (one that does not use any U.P.S. constructs) took several days

to develop. Converting this model to incorporate the U.P.S. constructs took approximately another dav.

This primarily involved extending the model's data structures to support the notion of sub-models, which

are basically just rectangular arrays of switches with one carrier and one station. This version of the model

was debugged on a single processor. When put on the Paragon, it took an additional 15 minutes of debugging

before the model ran correctly; the error was a simple indexing mistake involving the mapping of sub-models

to processors. In developing this model, most of the attention was paid to model correctness aspects. (CSIM

11
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Performance of U.P,S. on ATM Model (16x16 network)
normalized procs x time

2

1 2 4 8 16 32 64

Processors

Figure 7: Normalized processor × time product, illustrating super-linear accelerations on large numbers of

processors.

partitions the model into sub-models, one per processor, and incorporates the extension constructs into those

sub-models. The extensions are designed to provide essentially the same functionality as basic constructs

in the base simulator, but to do so in a way that the inter-processor synchronization and communication is

automated. The distributed model looks very much like a non-distributed model. In U.P.S. , a small set of

additional calls provide the parallel simulation capability. Ahnost all of the model is ordinary C and CSIM.

The methodology very much involves the modeler, who must partition the model, and must consider the

performance tradeoffs between different synchronization strategies when performing that partition. However,

the simulation modeler does not have to implement the communication and synchronization. That is clone

once, by the extension's author. This provides industry with a lower risk path to parallel processing, and an

ability to experiment with it with low software cost. In view of the general perception of parallel simulation

as tricky business, we believe this approach proves an important first step towards making parallel simulation
safe for the masses.

We are exploring this methodology by writing an extension library, U.P.S., for the commercial tool CSIM

(now distributed by Mesquite Software). It is a natural match, as CSIM modelers must be C programmers,

and should easily adapt to the interacting sub-models view of the simulation. A CSIM modeler needs to

incorporate only a few U.P.S. constructs into their models. To use U.P.S. , it helps for a CSIM modeler to

understand the fundamentals of SPMD programming, e.g., partitioning and mapping of snbmodels onto a

parallel processor. U.P.S. currently runs on the Intel Paragon. This paper provides preliminary performance

results of its performance on three models: a network of central server computer systems, a telephone

switching network, and an ATM network. We see that good performance is delivered on models where there

is ample parallelism which is easily abstracted.

We are continuing to extend the capabilities of U.P.S. , and seek to expand its user base and to port it

to other platforms. We are implementing an MPI (Message Passing Interface) version; MPI is the newly

emerging standard for message-passing applications. When operational, U.P.S. will execute on any platform

supporting both CSIM and MPI, which we expect to include most parallel systems as well as networks of

13
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